
Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

Data Movement Tips and Tricks

David Appelhans

IBM Research,

ORNL SUMMIT workshop
March 7, 2018

D. Appelhans Data Movement Tips and Tricks 1 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

INTRODUCTION

• This is an early version of 50 min talk for GTC 2018–For more
complete details, please see that talk.

• Importance of pinned memory. (Interoperability,
CUDA+OpenMP+OpenACC)

• Zero-copy tricks. (Interoperability, CUDA+OpenMP)

• Dealing with nested data structures. (Efficiency, CUDA Fortran)

D. Appelhans Data Movement Tips and Tricks 2 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

MOTIVATION: WHY YOU SHOULD PIN YOUR MEMORY

Pageable Memory Pinned Memory
0

5

10

15

20

25

30

35

40

45

50

Pageable vs Pinned HtoD Bandwidth Impact

Dual socket P9 + 6 Volta GPUs

OpenACC OpenMP CUDA

M
ea

su
re

d
B

an
dw

id
th

 (
G

B
/s

)

Example code runable on SUMMIT is availabe at https://github.
com/dappelha/gpu-tips/tree/master/pinned-memory

D. Appelhans Data Movement Tips and Tricks 3 / 19

https://github.com/dappelha/gpu-tips/tree/master/pinned-memory
https://github.com/dappelha/gpu-tips/tree/master/pinned-memory

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

PINNED MEMORY OPTION 1:

Use CUDA Fortran1pinned attribute to pin at allocation time,

1 real (kind=8), pinned, allocatable :: p_A(:)
2 allocate (p_A(N))
3 !$omp target data map(alloc :p_A)
4 do i=1,samples
5 !$omp target update to (p_A)
6 ...
7 enddo

Can also check success of pinning:

1 logical :: pstat
2 allocate (p_A(N), pinned=pstat)
3 if (. not . pstat) print ∗, "ERROR: p_A was not pinned"

1PGI and XLF compilers both support CUDA Fortran, so the pinned attribute can
easily be combined with directives.

D. Appelhans Data Movement Tips and Tricks 4 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

PINNED MEMORY OPTION 2:

Pin already allocated memory,2

1 use , intrinsic :: iso_c_binding
2 use cudafor
3 real , pointer , contiguous :: phi (:,:)
4 allocate (phi(dim1, dim2)) ! phi can also be pointer passed from C++
5 istat = cudaHostRegister(C_LOC(phi(1,1)), sizeof(phi) , cudaHostRegisterMapped)
6

7 !$acc enter data create (phi)
8 do i=1,samples
9 !$acc update self (phi)

10 ...
11 enddo

Warning: pinning memory is very slow. Memory should only be
pinned if it is going to be used for many transfers.

2This technique is especially useful if the memory was allocated outside the
developers control (for example in a C++ calling routine).

D. Appelhans Data Movement Tips and Tricks 5 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

OPENACC INTEROPERABILTY WARNING 1

You must use the flag -ta=tesla:pinned in order for OpenACC to
benefit from pinned memory. Without this flag you will see the same
bandwidth as pageable memory. There are two ways to use the flag:

1 Compiling with the flag -ta=tesla:pinned forces all memory to be
pinned memory. If you have many arrays that are not used by the
GPU, you will unnecessarily be paying the expensive cost to pin
them.

2 Linking the final executable with -ta=tesla:pinned causes the
OpenACC runtime to check if an array is already pinned. This
gives fine grain user control to manually pin arrays as shown in
the previous examples.

D. Appelhans Data Movement Tips and Tricks 6 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

OPENACC INTEROPERABILTY WARNING 2

The OpenACC runtime uses a memory pool on the device to save
from repeated allocation/deallocation of device memory. This is good
for exclusive OpenACC codes but it can cause trouble when mixing
programming models:

1 integer :: N = 8∗gigabyte
2 real (kind=8), allocatable :: A(:)
3 real (kind=8), device , allocatable :: d_A(:)
4 allocate (A(N))
5 !$acc enter data create (A)
6 !$acc exit data delete (A) ! <−−not truly free ’d unless PGI_ACC_MEM_MANAGE=0
7 allocate (d_A(N)) ! <−−−− can then run out of device memory

To disable this optimization, set the environment flag
PGI_ACC_MEM_MANAGE=0 and the runtime will free the data at
the exit data.

D. Appelhans Data Movement Tips and Tricks 7 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

USES OF ZERO COPY

Zero copy refers to accessing host resident pinned memory directly
from a GPU without having to copy the data to the device beforehand
(i.e. there are zero device copies).

• Quick overlap of data movement and kernel compute (mostly
bad idea because it hides compute/movement distinction, and
unified/managed memory now serves this purpose)

• Reads or writes of non unit stride arrays.
• Example 1: Large arrays where only small percent of data is

accessed in random pattern.
• Example 2: All data is accessed, but read/write pattern is

strided/not coalesced.
• Example 3: Efficiently populating elements of a structure,

avoiding the overhead of many copy api calls by using GPU
threads to fetch data directly.

D. Appelhans Data Movement Tips and Tricks 8 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

CUDA ZERO COPY SETUP

To set up zero copy of a basic array in Fortran, use a CUDA API to
get a device pointer that points to the pinned host array, and then
associate a fortran array with that C device pointer, specifying the
Fortran array attributes.

1 use iso_c_binding ! provides c_f_pointer and C_LOC
2 ! zero copy pointers for psib
3 type(C_DEVPTR) :: d_psib_p
4 real (adqt) , device , allocatable :: pinned_psib (:,:,:)
5

6 ! sets up zero copy of psib needed for snrefelctD on device .
7 istat = cudaHostGetDevicePointer(d_psib_p, C_LOC(psib(1,1,1)), 0)
8 ! Translate that C pointer to the fortran array with given dimensions
9 call c_f_pointer (d_psib_p, pinned_psib , [QuadSet%Groups, Size%nbelem,

QuadSet%NumAngles])

D. Appelhans Data Movement Tips and Tricks 9 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

OPENMP ZERO COPY EXAMPLE

Only requires CUDA pinned array and OpenMP is_device_ptr clause.

1 real (kind=8), pinned, allocatable :: A (:,:) ,At (:,:)
2 ...
3 allocate (A(nx,ny), At(ny,nx))
4

5 ! Transpose in the typical way:
6 !$omp target enter data map(alloc :A,At)
7 call transpose (A,At,nx,ny)
8 !$omp target update from(At)
9 !$omp target exit data map(delete :At)

10

11 ! Ensure device has finished for accurate benchmarking
12 ierr = cudaDeviceSynchronize()
13

14 ! Transpose using zero copy for At.
15 ! At is no longer mapped−−is_device_ptr(At) will
16 ! allow addressing host pinned memory (zero copy)
17 call transpose_zero_copy(A,At,nx,ny)

continued on next slide

D. Appelhans Data Movement Tips and Tricks 10 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

OPENMP ZERO COPY EXAMPLE CONTINUED

1 subroutine transpose_zero_copy(A,At,nx,ny)
2 ! example of strided writes to an array that lives on the host
3 ! variable declarations
4 implicit none
5 real (kind=8), intent (in) :: A (:,:)
6 real (kind=8), intent (out) :: At (:,:)
7 integer , intent (in) :: nx, ny
8 integer :: i , j
9 !$omp target teams distribute parallel do is_device_ptr (At)

10 do j=1,ny
11 do i=1,nx
12 At(j , i) = A(i , j)
13 enddo
14 enddo
15 return
16 end subroutine transpose_zero_copy

D. Appelhans Data Movement Tips and Tricks 11 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

OPENMP ZERO COPY TRANSPOSE

Table : Power8 + P100 results of doing a traditional matrix transpose and
then copying back from GPU vs doing the transpose directly into pinned
host memory.

Method Time(ms) Total Time
transpose + memcpy 57.3 + 63.1 120.4
zero-copy-transpose 65.4 65.4

D. Appelhans Data Movement Tips and Tricks 12 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

EFFICIENTLY POPULATING NESTED STRUCTURES

A niave implementation for getting data structures populated on the
GPU usually looks like this:

1 % ! allocate GPUelement
2 % do id=1, Nelements
3 % call construct_GPUelements(GPUelement,id,Nnodes)
4 % enddo
5 %
6 ! still need to poplulate the values from the host version of the data structure :
7 do id=1, Nelements
8 GPUelement(id)%Nnodes = element(id)%Nnodes ! implicit cudaMemcpy
9 GPUelement(id)%x = element(id)%x ! implicit cudaMemcpy

10 GPUelement(id)%y = element(id)%y ! implicit cudaMemcpy
11 GPUelement(id)%val = element(id)%val ! implicit cudaMemcpy
12 enddo
13 %
14 % do id=1,Nelements
15 % call destruct_GPUelements(GPUelement,id)
16 % enddo

This becomes incredibly slow when Nelements is large.
D. Appelhans Data Movement Tips and Tricks 13 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

EFFICIENTLY POPULATING NESTED STRUCTURES

There are two ways to fix the niave approach,

1 loop over cudaMemcpyAsync calls instead of the numerous
blocking calls done above,

2 pull the data from the GPU by populating the arrays from within
a device kernel using zero copy.

D. Appelhans Data Movement Tips and Tricks 14 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

PUSH DATA BY LOOPING OVER CUDAMEMCPYASYNC

CUDA Fortran code would look like this:

1 integer (cuda_stream_kind) old_stream, streamid
2 ierr = cudaStreamCreate(streamid)
3 old_stream = cudaforGetDefaultStream() ! save the current default stream
4 ierr = cudaforSetDefaultStream(streamid) ! Set the default stream to streamid
5 do id=1, Nelements
6 GPUelement(id)%Nnodes = element(id)%Nnodes ! implicit cudaMemcpyAsync on streamid
7 GPUelement(id)%x = element(id)%x ! implicit cudaMemcpyAsync on streamid
8 GPUelement(id)%y = element(id)%y ! implicit cudaMemcpyAsync on streamid
9 GPUelement(id)%val = element(id)%val ! implicit cudaMemcpyAsync on streamid

10 enddo
11 ierr = cudaforSetDefaultStream(old_stream) ! restore the original default stream

Can do similar in OpenMP 4, with update nowait (no example yet).

D. Appelhans Data Movement Tips and Tricks 15 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

PULLING FROM THE GPU

Set up a way to reference host structures from the device (zero copy
of a structure):

1 ! to use element on the device , we have to make a device valid copy called d_element:
2 istat =cudaMemcpyAsync(d_element, element, size(element), 0)
3 ! similarly with d_GPUelement, we need to transfer the device memory addresses held

in GPUelement
4 istat =cudaMemcpyAsync(d_GPUelement, GPUelement, size(GPUelement), 0)
5 ! Now we can use these in a CUDA kernel to zero copy
6 ! the member data from d_element into d_GPUelement
7 call set_elements_kernel <<<blocks,threads>>>(d_GPUelement,d_element,Nelements)

• line 4 allows deep references within a GPU kernel, such as
d_GPUelement(id)%d_member.

• Can also accomplish this by making GPUelement a managed
memory variable.

D. Appelhans Data Movement Tips and Tricks 16 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

Launch a kernel to have GPU threads pull data from structures on the
host into structures on the device:

1 attributes (global) subroutine set_elements_kernel (GPUelement,element, Nelements)
2 implicit none
3 ! kernel that uses zero copy to popluate the GPUelement structure .
4 ! I have dropped the d_ prefix for convenience on these dummy variables
5 type(GPUelement_type), device, intent (inout) :: GPUelement(:) ! members are device
6 type(element_type) , device , intent (in) :: element (:) ! members are pinned host
7 integer , value , intent (in) :: Nelements
8 integer :: id , Nnodes, node
9

10 do id=blockIdx%x,Nelements, gridDim%x
11 Nnodes = element(id)%Nnodes
12 GPUelement(id)%Nnodes = Nnodes
13 do node = threadIdx%x, Nnodes, blockDim%x
14 GPUelement(id)%x(node) = element(id)%x(node)
15 GPUelement(id)%y(node) = element(id)%y(node)
16 GPUelement(id)%val(node) = element(id)%val(node)
17 enddo
18 enddo
19

20 end subroutine set_elements_kernel

D. Appelhans Data Movement Tips and Tricks 17 / 19

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

EXAMPLE CODE

Example code runable on SUMMIT is availabe at
https://github.com/dappelha/gpu-tips/tree/
master/pinned-memory

Includes:
• jsrun submission script example,
• affinity checking script to verify,
• device binding helper script,
• pinned memory comparison example.

Questions: David Appelhans - dappelh@us.ibm.com

D. Appelhans Data Movement Tips and Tricks 18 / 19

https://github.com/dappelha/gpu-tips/tree/master/pinned-memory
https://github.com/dappelha/gpu-tips/tree/master/pinned-memory

Introduction Pinned Memory Uses of Zero Copy Nested Data Structures

QUESTIONS?

David Appelhans - dappelh@us.ibm.com

D. Appelhans Data Movement Tips and Tricks 19 / 19

	Introduction
	Pinned Memory
	Uses of Zero Copy
	Nested Data Structures

